Maximising solar energy (and cost savings) with effective battery storage

Lots of customers are opting to install solar photovoltaic (PV) systems to their homes to lower their long-term energy bills and become more environmentally self-sustaining. With many options available to customers, it can be tricky to navigate the options out there and decide what’s right for you.

In this article we’ll explore the importance of battery storage, and why it’s key to unlocking bigger savings and maximising the renewable energy available to you.

The difference between Solar PV and battery storage

If you install Solar PV into your home, without battery storage, you’ll only be able to use the energy you generate immediately, because – put simply – there’s nowhere for you to store the energy you generate.

If you install a battery storage system alongside your Solar PV, you’ll be able to store the energy you generate and use it at a time that suits you. This is especially important for the Scottish climate, where we have long nights for half of the year, and don’t always have an abundance of sunshine.

Solar PV vs Solar battery storage

The benefits of combining battery storage and Solar PV systems

By choosing to integrate battery storage with your Solar PV, you will unlock a number of additional benefits – both financial and environmental:

 

  • Energy independence: By storing the excess solar-generated electricity in battery storage systems, you can reduce your reliance on the grid, providing you with a greater degree of energy independence and resilience in the face of power outages or disruptions.
  • Maximise your use of solar energy: Battery storage enables you to obtain the full value of your solar-generated electricity by storing and utilising solar energy during times of low sunlight or peak energy demand. This reduces the amount of grid electricity consumed and lowers your energy bills.
  • Reduce your carbon footprint: The combined use of Solar PV systems and battery storage results in lower greenhouse gas emissions and a reduced carbon footprint, making a positive contribution to climate change mitigation and a greener environment.
  • Lower energy bills: Storing solar-generated electricity in battery storage systems allows you to utilise clean energy efficiently, reducing your need to purchase and consume grid electricity. This results in lower energy bills, creating substantial, long-term savings.
  • Feed-in tariffs and the Smart Export Guarantee (SEG): If you generate more solar electricity than you can consume or store, you can actually sell the excess electricity back to the grid. In the UK, this can be done through the Smart Export Guarantee (SEG) scheme, which provides financial reward for the excess solar energy exported.
  • Investment payback period: Although the initial investment in a combined solar PV and battery storage system can seem substantial, the cost savings can offset the investment over time. In many cases, homeowners and businesses can recover their investment in just a few years.

Choosing the right battery storage system

With so many different types of battery and complex terminology to deal with – finding the right system for you, can seem daunting. Pay attention to these three key factors and seek advice from experts – like the team at Ceiba renewables – to choose the right one for you. If you want to know more about selecting a battery system, you can read our blog on the topic – written by our inhouse battery storage experts.

  • Battery type: The two main types of battery storage solutions are lithium-ion and lead-acid batteries. Lithium-ion batteries offer a longer lifespan, better performance and efficiency, and are lighter weight, making them the preferred choice for most solar PV system applications.
  • Battery capacity: The capacity of your battery storage system should align with your energy consumption patterns, solar PV system size, and the amount of excess solar energy you expect to generate.
  • System compatibility: It’s essential to ensure that your chosen battery storage system is compatible with your solar PV system’s components. You can find this out by consulting with an expert in renewable energy, like Ceiba Renewables, to ensure a seamless and efficient integration.

At Ceiba Renewables we truly care about promoting renewable energy solutions that deliver significant savings on energy expenses, empowering homeowners and businesses to transition to a cleaner, more efficient energy future. If you’re in the market for Solar PV, for your home, partner with Ceiba Renewables for expert guidance, design, consultancy, project management, and installation of your integrated battery storage and solar PV system. We’ll provide you with the expertise and the confidence to invest in a sustainable and game-changing energy solution. Get in touch with our team to have a conversation.

Choosing the right battery storage system for you – all you need to know

Energy storage is a hot topic these days, especially in Scotland where the push for renewable energy is stronger than ever. But let’s face it, the world of energy storage can be a bit intimidating. There’s a lot to consider: What kind of storage system do you need? What’s the best choice for your home or business?

Whether you’re a homeowner looking to reduce your carbon footprint or a business owner aiming to make your operations more sustainable, this guide will provide the insights you need to make an informed decision.

What is a battery storage system, in a renewable energy setting?

To put it simply, a battery storage system is a device that allows renewable technologies (like Solar PV or wind turbines, to name but a few) to store the energy they create, so that it can be used at a time that’s most useful.

Without a battery storage system, the energy that’s generated would have to be used right away, whether it was needed or not.

Customers who are looking to integrate battery storage into their Solar PV system, will find they unlock a number of benefits, like uninterrupted power supply, increased independence from the grid, and lower energy bills. You can find out more about the benefits of battery storage and Solar PV in our dedicated blog.

How to Choose the Best Battery Storage System 

There are several types of battery storage systems available, and choosing the right one for your needs can be a complex task. The most popular battery storage technologies include:

  • Lithium-ion batteries: Currently the most common and widely used battery storage technology, lithium-ion batteries boast a high energy density, long cycle life, and operate very efficiently. They are well-suited to residential and commercial installations due to their compact size, lightweight structure, and low maintenance requirements.
  • Lead acid batteries: A tried-and-tested technology, lead-acid batteries provide cost-effective energy storage solutions. However, they have a lower energy density, shorter cycle life, and require regular maintenance compared to lithium-ion batteries – which makes them a less popular choice with consumers.
  • Flow batteries: Flow batteries employ a unique, liquid-based energy storage method, that makes them a scalable and long-lasting energy storage option. Although typically associated with larger installations, flow batteries are increasingly being explored for residential uses.

When choosing a battery storage technology, consider factors such as space, maintenance requirements, efficiency, and budget to ensure an ideal fit for your home or business in Scotland.

Understanding the lingo

When choosing the right battery storage solution for you, you might hear a number of terms mentioned. The ones to pay attention to, are listed below:

  • Capacity: The capacity, measured in kilowatt-hours (kWh), signifies the amount of energy that can be stored in the battery. You need to make sure that your chosen battery storage system has sufficient capacity to cater to your energy needs during times when solar generation is low. The best way to figure this out – is to speak to an expert – like the Ceiba Renewables team.
  • Depth of Discharge (DoD): DoD refers to the percentage of the battery’s total capacity that can be discharged before it requires recharging. Higher DoD values allow you to use more of the stored energy, increasing your battery’s effectiveness and extending its lifespan. A rough rule of thumb is, the higher the DoD, the better.
  • Round-trip efficiency: Assess the battery’s round-trip efficiency, which indicates the percentage of energy retained during the charge and discharge process. Higher efficiency values result in more stored energy available for use.

As well as assessing a battery’s performance against each of these metrics, you also need to find one that works for your budget. Remember that as well as the cost of the battery system, you’ll also have installation, permit, and warranty costs. When speaking to customers we often calculate the cost per kilowatt-hour (kWh) for each system, which gives customers an idea of the savings available, against the cost for implementing each system. With our help, we’ll find the right one to suit your needs, that’s financially manageable for you too.

Batter storage systems really are the key to making the most of your renewable technology. And if you’re considering Solar PV – battery storage will give you higher cost savings and better energy use. We’re here to help you navigate the complexities of battery storage systems in Scotland, ensuring seamless integration into your renewable energy setup. Get in touch with Ceiba Renewables today to learn more about our battery storage solutions – it all starts with a conversation, one that we’re more than happy to have.

Understanding the DNO and G99 Applications for Tesla Powerwall 3

When installing a Tesla Powerwall 3 alongside a solar PV system, working with your local Distribution Network Operator (DNO) is essential. The DNO ensures your system complies with grid regulations, which can influence your battery settings and export limits. In Scotland, for example, the DNOs are SSE and Scottish Power. Below is an easy-to-follow guide on how DNO regulations like G98 and G99 may affect your installation.

map of energy network operators DNO

What is the G98 Regulation?

The G98 regulation allows you to connect systems with an output of up to 3.68kW (equal to 16 amps) to the grid without prior approval or fees. This limit applies to both your solar panels and battery system combined, making it a simple and cost-effective option for smaller installations, combatting climate change.

Why Does the G99 Regulation Matter?

If your solar panels and battery system together exceed 3.68kW, you’ll fall under the more complex G99 regulation. Even if your Tesla Powerwall 3 doesn’t export energy to the grid, the DNO considers it part of your generation system. For instance, if you have both a solar PV array and an AC-coupled battery system, the combined power could push you into G99 territory, requiring approval.

Power During an Outage: The Role of “Islanding”

One key feature of the Tesla Powerwall 3 is its ability to keep your home powered during an outage, known as “islanding.” However, if your Powerwall is capable of islanding, your system automatically requires a G99 application, even if your system doesn’t exceed the 3.68kW limit.

How G99 Applications Work

A G99 application is required for any system that outputs more than 3.68kW per phase to the grid. Note that this applies to the continuous output from your battery (on the AC side), not the capacity of your solar panels or battery storage. The DNO can take up to 45 working days (around 3 months) to process your G99 application and provide an Offer Letter, detailing any associated costs. Sometimes, there are no fees, but additional costs such as admin fees, testing fees, or even network upgrades may be required.

Understanding DNO Costs

DNOs interpret regulations differently, meaning costs can vary widely. Some applications are approved without any fees, while others may involve significant costs. This makes it difficult to predict the exact charges in advance. Thankfully, experienced installers like Ceiba Renewables often have good relationships with DNOs, which can help streamline the process and reduce costs, especially for witness testing.

What If G99 Costs Are Too High?

If the G99 Offer Letter is too expensive, there’s an alternative: designing the system with Export Limitation. This limits the output of your solar PV and Powerwall to 3.68kW each, which can sometimes avoid the G99 fees altogether.

The G99 Fast-Track Process

Some DNOs offer a G99 Fast-Track option for systems where both the battery and solar PV are capped at 3.68kW. This fast-track process has no fees and a quicker approval time, but its availability can vary. Crucially, the Fast-Track is not available for batteries that work during power cuts.

Choose the Right Output Setting for Tesla Powerwall 3

Option 1: Apply for the Full 11.04kW Output

One approach is to apply for the total 11.04kW output and see what the DNO says. While the DNO may impose fees or require a longer approval process, applying for the maximum output ensures that you future-proof your system for potential upgrades or increased energy needs. If approved, you can take full advantage of your Powerwall 3’s capabilities and maximize energy storage and output, especially in scenarios like energy trading or high-load usage.

Option 2: Size the Powerwall Output Based on Your Solar PV

Another strategy is to size the Tesla Powerwall 3’s output to match your solar PV output, which could make the approval process smoother and quicker. For instance, if your solar system produces around 7kW, you might choose a 7kW output setting for the Powerwall. This aligns the battery’s output with your solar generation, preventing unnecessary energy clipping and ensuring optimal energy use.

This option can also help avoid costly fees or lengthy approval processes, as the DNO may find it easier to approve a system sized to balance with the solar generation rather than maxing out at the 11.04kW setting.

Considering Solar Panel Orientation

Best Direction For Solar Panels

The orientation of your solar panels plays a key role in determining the ideal output setting. For example, if your solar panels are spread across different roof angles, the peak output might be lower than the total kWp of your system. Matching the Powerwall 3’s output to the actual power your panels are capable of generating (up to 11.04kW) ensures the system operates efficiently without overloading the grid.

Comparing Discharge and Charge Rates

With multiple output options, it’s also important to consider the impact on discharge and charge rates. For example, if your battery discharges at 11.04kW, a fully charged 13.5kWh battery will last for around 1.2 hours under heavy load (13.5kWh / 11.04kW). In contrast, a 3.68kW setting would last approximately 3.66 hours under the same conditions, offering greater endurance but slower power delivery.

Choosing the right setting depends on how you intend to use the Powerwall. If fast charging during off-peak times is a priority, higher output settings like 10kW or 11.04kW could be advantageous. However, if you’re more concerned with extending battery life during power outages, a lower setting like 3.68kW or 5kW may be more suitable.

Which Setting is Best for You?

Ultimately, the right output setting for your Tesla Powerwall 3 depends on your unique circumstances. If you have a solar system that generates 4.5kW or more, applying for the 11.04kW setting may give you the flexibility to maximize energy usage. However, if you’re concerned about DNO approval times or fees, sizing the output to your solar PV generation (for example, 6kW or 7kW) may result in faster approval and fewer complications.

As always, you can work with your installer to adjust your settings if needed, and you can even reapply with different settings based on the feedback from the DNO.

The End of an Era for Coal Power in the UK

Ratcliffe-on-Soar cola plant

(Image source: independent.co.uk)

UK’s Coal Energy Departure

On Monday, September 30, 2024, Ratcliffe-on-Soar Power Station in Nottingham ceased operations, marking a significant historical moment for the UK. After nearly 60 years of service, this is the last coal-fired power station still running in the country, and its closure signifies the UK’s complete departure from coal energy. This journey began with the Industrial Revolution.

From being a global pioneer in coal-powered electricity, the UK has now emerged as a leader in the transition away from coal power. It has become the first G7 nation to achieve this feat, a milestone reached after almost 150 years of coal use. This underscores the country’s unwavering commitment to greener energy and serves as a historic moment in the global move towards a cleaner, more sustainable future.

The journey began in 1882 when Thomas Edison built the world’s first coal-fired power plant in London, sparking the coal revolution. From that moment on, coal became a cornerstone of the Industrial Revolution for another 142 years, powering factories, homes, and transportation across the United Kingdom. (Molly Lempriere, 2024) 

GB Fuel type power generation production

Comparison of GB Fuel type power generation production as percentages (Stolworthy, 2024) on 30th October 2024 and after the coal plant’s closure.

A Step Towards a Greener Future

Closing the last coal-fired power station in the UK is a significant step towards a greener and more sustainable future. With the transition from coal power, the renewable energy industry can improve and expand in several ways. This is a historic victory for British society, particularly for climate activists, according to Daniel Therkelsen (Gagliardi, 2024). Ceiba Renewables is committed to leading Scotland’s efforts to fight climate change and promote renewable energy. With the closure of Ratcliffe-on-Soar Power Station, there is an opportunity to further invest in and develop renewable energy sources such as wind, solar, and hydroelectric power. By expanding our renewable energy infrastructure, we can contribute to reducing carbon emissions and mitigating the impact of climate change.

We are human and we hold the power to drive the green energy revolution forward. We can make a significant contribution by considering a switch to renewable energy sources for our homes or businesses, such as installing solar panels or choosing energy providers that offer renewable energy options. Moreover, advocating for policies that support renewable energy development and promoting sustainable practices in our communities can further accelerate this transition.

By collectively embracing renewable energy and sustainable practices, we can create a better, greener future for our children and future generations, reducing environmental impact and combatting climate change.

Sources

Gagliardi, M. (2024) The UK exits coal power, ushering in ERA of renewables, Beyond Fossil Fuels. Available at: https://beyondfossilfuels.org/2024/09/29/the-uk-exits-coal-power-ushering-in-era-of-renewables/ (Accessed: 02 October 2024).

Stolworthy, M. (2024) GB Fuel type power generation production as percentages, GridWatch.co.uk. Available at: https://gridwatch.co.uk/demand/percent (Accessed: 30 September 2024).

Molly Lempriere, S.E. (2024) Q&A: How the UK became the first G7 country to phase out coal power, Carbon Brief. Available at: https://interactive.carbonbrief.org/coal-phaseout-UK/ (Accessed: 02 October 2024).

What Are the Top Design Highlights of Tesla Powerwall 3?

At Ceiba Renewables, we’re excited to introduce the Tesla Powerwall 3 — a next-generation battery that not only eliminates rare earth metals but offers remarkable flexibility with its programmable inverter. This feature helps us navigate the unknowns of the G99 application process required by the Distribution Network Operator (DNO) when installing Powerwalls, ensuring your home can safely integrate with your home and disconnect from the grid during outages.

The Powerwall 3 charges at 5kW but can output up to 11.04kW to power your home from solar energy or export to the grid (subject to DNO approval). These capabilities optimise energy use, reduce grid dependency, and offer savings.

In this post, we’ll break down key design considerations to help you understand how the Powerwall’s settings work together to maximise your system’s efficiency.

Key Tesla Powerwall 3 Components

 

Solar PV kWp Rating

The kilowatt-peak (kWp) rating measures your solar panels’ maximum output under optimal conditions. A 6kWp solar system, for example, can produce up to 6kW in peak sunlight, helping meet your household power needs and storing excess energy.

G99 application image

G99 Setting: Battery Output to the House

The G99 setting determines how much power the Powerwall can send to your home & the grid. The Powerwall 3 can supply up to 11.04kW, but this will require approval from your DNO. Once the DNO have assessed the application, the output might need to be limited to 3.68kW, 5kW, 6kW, 7, 8, 9, 10 or 11.04kW to comply with DNO requirements.

G100 Export Limit Setting

The G100 limit governs how much excess energy can be exported back to the grid. Depending on local grid rules, this limit may be set at 3.68kW but could go as high as 11.04kW with DNO approval. Any solar energy produced beyond this limit is “clipped,” meaning it’s neither used nor exported.

Battery Charge Rate

The Powerwall 3 charges at a rate of 5kW, allowing it to efficiently store energy from solar panels or the grid for later use.

Real-World Example: Gerry’s Setup

Let’s take Gerry as an example:

  • Solar PV Setup: 13.2kWp solar panels (10kW West-facing, 3.2kW South-facing).
  • Powerwall 3: Storing excess solar energy.
  • G100 Export Limit: 3.68kW.
solar panel installation planned design 13.2kWp

Image: Gerry’s Solar System

On a sunny day, his panels might produce up to 13kW. The Powerwall charges at 5kW, leaving 8kW for household use or export. If Gerry’s home only uses 1kW at the time, 7kW is available for export, but due to the 3.68kW export limit, 3.32kW will be clipped.

Clipping: What It Means for Your System

Clipping happens when your system produces more solar power than can be used in the home and exported. In Gerry’s case, 3.32kW was clipped. Although this might sound like a loss, it only occurs during peak production meanwhile in lower light conditions the PV system can produce more power than a lower output system. Homeowners can also offset clipping by using excess energy for high-demand activities like charging an electric vehicle (EV). The Tesla Wall Charger and Zappi EV Chargers are ideal for this!

Future-Proofing Your Tesla Powerwall 3 Setup

To prepare for future energy needs:

  • Cable Sizing: Use the right cables (e.g., 16mm² for an 11.04kW output) to handle future Powerwall upgrades.
  • G99 Applications: To unlock the full 11.04kW output, you’ll need DNO approval. This process can take time and isn’t always guaranteed, but it can enhance your system’s flexibility and potential for financial returns, especially with energy trading.

Key Takeaways

When designing your Tesla Powerwall 3 system:

  • Lower output settings ensure regulatory compliance but may limit energy use and exports.
  • Higher solar PV ratings generate more energy but could lead to clipping during peak production.
  • Your system’s settings will depend on your energy needs, local DNO requirements, and future goals.

Choosing the 11.04kW output option may require extra time for DNO approval, and we may need to resubmit applications if approval is denied.

Next Steps

We’ll tailor your Tesla Powerwall 3 system based on your specific needs and DNO limitations. Here’s an example of how your settings might look:

Setting Example Value
Solar PV Rating (kWp) 13.2kW
Battery Output (G99) 11.04kW
Export Limit (G100) 3.68kW
Battery Charge Rate 5kW

Feel free to reach out with any questions or to learn more about optimising your Tesla Powerwall 3 system!

Will Tesla Powerwall 3 Transform the UK’s Energy Market?

The upcoming release of the Tesla Powerwall 3 is expected to significantly impact the UK’s energy landscape. Tesla, a leading provider of home solar panels, is continuing to advance sustainable energy solutions with its latest Powerwall technology. The Powerwall’s efficient solar energy storage, adaptability to different setups, and contribution to energy security have already made a noticeable impact in the United Kingdom.

The upcoming launch of the Powerwall 3 in Scotland and across the UK has sparked a lot of excitement among homeowners, clean energy enthusiasts, and environmental advocates. This new solar energy battery storage system is designed to work seamlessly with solar panels and other renewable energy sources. It’s expected to give households more control over their energy usage while also reducing their carbon footprint. With its improved efficiency and advanced features, the Tesla Powerwall 3 is set to change the way we use renewable energy systems in the UK. Its anticipated release by the end of 2024 is a big step towards a more sustainable future.

Powerful Key Features and Specifications

Below are some of the key similarities and differences between Powerwall 2 and Powerwall 3.

 

SIMILARITIES

 

  • Storage Capacity of 13.5kWh of Usable Power per Powerwall
  • Scalable (adding a second Powerwall gives you 27kWh of storage capacity)
  • Whole House Backup
  • Can be Installed Outside (recommended Best Practice from IET & MCS)
  • Advanced Battery Cooling for Maximum Durability, Lifespan and Performance
  • Tesla’s (mostly) excellent installer and customer Technical Support

Technical details

The Tesla Powerwall 3 boasts impressive features and specifications that set it apart from its previous models. With a nominal grid voltage of 120/240 VAC and a grid type of split phase, it operates at a frequency of 60 Hz. The Powerwall 3 incorporates robust overcurrent protection with a 60A device and offers excellent surge withstand voltage on both AC ports (4 kV) and communication ports (2 kV). It also demonstrates impressive radiated RF immunity at 35 V/m.

One of the standout features of the Powerwall 3 is its exceptional efficiency. It boasts a solar-to-battery-to-grid round-trip efficiency of 89% and a remarkable solar-to-grid efficiency of 97%, ensuring minimal energy losses during operation. The Powerwall 3 supports various islanding devices, including Backup Gateway 2, Backup Switch, and Gateway 3, enhancing its versatility and compatibility.

Connectivity is a strong suit of the Powerwall 3, with Wi-Fi (2.4/5 GHz), dual-port switched Ethernet, and cellular (LTE/4G options available. It also features a hardware interface with a dry contact relay, Rapid Shutdown (RSD) certified switch and 2-pin connector, and RS-485 for meters. The AC metering is revenue-grade, ensuring accurate measurements with a precision of +/- 0.5%.

In terms of safety, the Powerwall 3 incorporates an integrated arc fault circuit interrupter (AFCI), Isolation Monitor Interrupter (IMI), and PV Rapid Shutdown (RSD) using Tesla Mid-Circuit Interrupters, providing comprehensive protection against potential hazards. Customers can conveniently monitor and control the system through the Tesla Mobile App.

The Powerwall 3 offers a 10-year warranty, ensuring long-term reliability and peace of mind for users. With a maximum solar STC input of 20 kW and a withstand voltage of 600V DC, it can handle substantial solar power input. [5] The PV DC input voltage range is 60-550V DC, while the MPPT voltage range is 60-480V DC, accommodating a wide range of solar panel configurations. It features three MPPTs, each capable of handling a maximum current of 13A and a maximum short-circuit current of 15A.

The Powerwall 3 boasts a nominal battery energy of 13.5 kWh, a maximum continuous discharge power of 11.04 kW, and a maximum continuous discharge power off-grid (PV only, -20°C to 25°C) of 11.04 kW. Its maximum continuous charge power is 5 kW, and the output power factor rating is configurable from 0 to 1, allowing for grid code compliance. With a maximum continuous current of 48A and a load start capability of 185A LRA (1s), the Powerwall 3 can handle substantial power demands. Additionally, the system supports power scalability, with up to four Powerwall 3 units supported, enabling users to expand their energy storage capacity as needed.

Please note, some of the above information subject to change once PW3 has been launched in UK.

DIFFERENCES

  • The system offers AC- and/or DC-coupled flexibility, making it suitable for new installations and retrofit projects.

 

Direct DC Coupling

Direct DC Coupling

The Powerwall 3 integrates directly with solar panels, featuring an integrated solar inverter for a more efficient setup and eliminates the need for an additional solar inverter, reducing the required power conversions. In a system with direct DC coupling, the solar energy generated by the panels goes straight into the Powerwall 3’s battery, avoiding the need for additional conversions. This direct charging of the battery results in higher efficiency, with the Powerwall 3 boasting an impressive 96-97% charging efficiency compared to the 92-93% efficiency of the Powerwall 2.

Increased System Efficiency

The direct DC coupling of Powerwall 3 with solar panels contributes to increased overall system efficiency. By eliminating the need for multiple power conversions, the system minimises energy losses, allowing us to harness more of the solar energy generated by our panels.

We can see the efficiency gains when examining the power conversion process in detail. With a DC-coupled system, the solar energy generated by the panels is directly stored in the Powerwall 3’s battery, with charging losses typically less than 3%. In contrast, an AC-coupled system like the Powerwall 2 requires power conversion from DC to AC at the solar inverter and then from AC to DC during battery charging, resulting in a combined loss of around 7%. Additionally, when discharging the stored energy, there is a further 3% loss from converting DC to AC. By minimising these conversion losses, the Powerwall 3’s DC-coupled design achieves a higher round-trip efficiency, allowing us to maximize the utilization of our solar energy.

Moreover, the integrated solar inverter in the Powerwall 3 offers additional benefits. With six Maximum Power Point Tracking (MPPT) inputs, the system can efficiently handle shading requirements across various installations, ensuring optimal solar energy capture. Furthermore, the Powerwall 3’s integrated inverter is programmable, with an output range of 3.68 kW to 11.04 kW, providing greater flexibility in system design and compliance with grid restrictions imposed by District Network Operators (DNOs).

  • The system offers AC- and/or DC-coupled flexibility, making it suitable for new installations and retrofit projects.
  • It demonstrates improved efficiency in DC-coupled systems, with specific efficiency metrics to be confirmed.

Improved Energy Efficiency

The Powerwall 3 stands out for its impressive round-trip efficiency of 97.5%. This means it can store more solar power before sending it to the grid, which helps minimize energy wastage. Tesla likely achieved this by combining the inverter and battery system, removing the need for an external inverter and improving the overall system design.

  • It utilises a distinct cell technology that eliminates the use of rare earth metals.
  • The integrated solar inverter delivers various advantages, including improved energy conversion, streamlined data viewing through a single application, and cost efficiency compared to third-party inverters.

Integrated Solar Inverter

The new Powerwall 3 now includes a built-in solar inverter, a significant change from the Powerwall 2, which previously required a separate solar inverter. This new design offers several advantages:

1. More efficient: Connecting solar panels directly to the Powerwall 3’s integrated inverter reduces power conversion losses, making the system more efficient.

2. Easier to monitor: The integrated inverter allows users to monitor and control both the solar and battery systems through a single Tesla Mobile App, making everything easier to manage.

3. Saves money: Eliminating the need for a separate solar inverter saves users money, making the whole solar and storage system more affordable.

In addition, it has 3 individual solar connections, allowing for a maximum solar input of 20 kW or 6.6 kW per connection. This is an improvement from the previous Powerwall Plus model, allowing for more efficient shade mitigation and installing a larger number of solar panels at once. Also, the Powerwall 3’s inverter is programmable, with an output range of 3.68 kW to 11.04 kW. This flexibility allows users to adjust the output to comply with DNO grid restrictions, increasing the chance of getting approval for grid connections that may have been rejected before by SPEN or SSE. This feature promises access to the desired solar and storage system.

  • While marginally higher priced than the PW2, when paired with a solar PV system, overall costs are expected to be lower due to inverter-related savings.
  • It will offer a non-backup option, reducing costs for customers who do not require backup functionality during power outages.
  • Furthermore, advanced features are anticipated within the next 12 months. Detailed information is pending, and updates will be shared once available.

BENEFITS

 

Back Up Power

The Tesla Powerwall 3 provides whole-home backup power during grid outages, ensuring uninterrupted power supply to essential appliances and systems. Its Storm Watch feature automatically charges the battery to maximum capacity during stormy weather, offering peace of mind during potential power outages.

Energy Independence 

The Powerwall 3 enables greater energy independence by allowing storage and use of excess solar energy, reducing reliance on the grid. By combining it with solar panels, you can produce clean energy, reducing carbon footprint and insulating from energy price changes and supply chain disruptions.

Cost Saving

Whether you are a business or a homeowner, saving money by storing solar energy during peak hours when electricity rates are higher can lead to significant cost savings and a reduced carbon footprint. Less reliance on the grid will not only maximise the use of solar energy but lead to substantial long-term savings on electricity costs. The integrated solar inverter further contributes to cost savings by eliminating the need for a separate third-party inverter.

Monitoring and Control

Making smart choices about your energy has always been challenging. The Tesla app gives you more control over your total energy usage and generation. It helps you adjust your energy needs and performance, giving you the power of real-life involvement in managing. It feels good knowing that investing in sustainable energy solutions benefits you and the environment.

Expected Launch and Availability

As a leading Tesla Powerwall Installer, we can’t hold our excitement for the upcoming Powerwall 3 in the UK market. Tesla opened orders for the Powerwall 3 in the US in March 2024, and we’re excited to announce that it will soon be available in the UK, which is expected by the end of 2024. As a trusted partner, we’ll be among the first to offer this cutting-edge technology to our customers well before it hits the mainstream market.

It’s important to note that the Powerwall 3 will not be compatible with existing Powerwall 2 setups. This means that for customers interested in upgrading to the Powerwall 3, a completely new system will need to be installed, as the two generations cannot be combined or integrated.

Act now and join our exclusive waiting list to become part of the future of energy solutions!

Get ahead of the curve as Tesla Energy UK gears up for a major announcement this summer. As confirmed by an Ofgem employee in a recent conversation, we expect an exceptional surge in orders as Tesla revolutionises the energy industry. Powerwall 2 units are currently in stock, and we are eagerly anticipating the arrival of the Powerwall 3.